154 research outputs found

    Risk and temporal order of disease diagnosis of comorbidities in patients with COPD: a population health perspective

    Get PDF
    Introduction: Comorbidities in patients with chronic obstructive pulmonary disease (COPD) generate a major burden on ealthcare. Identification of costeffective strategies aiming at preventing and enhancing management of comorbid conditions in patients with COPD requires deeper knowledge on epidemiological patterns and on shared biological pathways xplaining cooccurrence of diseases. Methods: The study assesses the co-occurrence of several chronic conditions in patients with COPD using two different datasets: Catalan Healthcare Surveillance System (CHSS) (ES, 1.4 million registries) and Medicare (USA, 13 million registries). Temporal order of disease diagnosis was analysed in the CHSS dataset. Results The results demonstrate higher prevalence of most of the diseases, as comorbid conditions, in elderly (>65) patients with COPD compared with non-COPD subjects, an effect observed in both CHSS and Medicare datasets. Analysis of temporal order of disease diagnosis showed that comorbid conditions in elderly patients with COPD tend to appear after the diagnosis of the obstructive disease, rather than before it. Conclusion: The results provide a population health perspective of the comorbidity challenge in patients with COPD, indicating the increased risk of developing comorbid conditions in these patients. The research reinforces the need for novel approaches in the prevention and management of comorbidities in patients with COPD to effectively reduce the overall burden of the disease on these patients

    Synergy-COPD: a systems approach for understanding and managing chronic diseases.

    Full text link
    Chronic diseases (CD) are generating a dramatic societal burden worldwide that is expected to persist over the next decades. The challenges posed by the epidemics of CD have triggered a novel health paradigm with major consequences on the traditional concept of disease and with a profound impact on key aspects of healthcare systems. We hypothesized that the development of a systems approach to understand CD together with the generation of an ecosystem to transfer the acquired knowledge into the novel healthcare scenario may contribute to a cost-effective enhancement of health outcomes. To this end, we designed the Synergy-COPD project wherein the heterogeneity of chronic obstructive pulmonary disease (COPD) was addressed as a use case representative of CD. The current manuscript describes main features of the project design and the strategies put in place for its development, as well the expected outcomes during the project life-span. Moreover, the manuscript serves as introductory and unifying chapter of the different papers associated to the Supplement describing the characteristics, tools and the objectives of Synergy-COP

    A Parameter-Efficient Learning Approach to Arabic Dialect Identification with Pre-Trained General-Purpose Speech Model

    Full text link
    In this work, we explore Parameter-Efficient-Learning (PEL) techniques to repurpose a General-Purpose-Speech (GSM) model for Arabic dialect identification (ADI). Specifically, we investigate different setups to incorporate trainable features into a multi-layer encoder-decoder GSM formulation under frozen pre-trained settings. Our architecture includes residual adapter and model reprogramming (input-prompting). We design a token-level label mapping to condition the GSM for Arabic Dialect Identification (ADI). This is challenging due to the high variation in vocabulary and pronunciation among the numerous regional dialects. We achieve new state-of-the-art accuracy on the ADI-17 dataset by vanilla fine-tuning. We further reduce the training budgets with the PEL method, which performs within 1.86% accuracy to fine-tuning using only 2.5% of (extra) network trainable parameters. Our study demonstrates how to identify Arabic dialects using a small dataset and limited computation with open source code and pre-trained models.Comment: Accepted to Interspeech. Code is available at: https://github.com/Srijith-rkr/KAUST-Whisper-Adapter under MIT licens

    Predictive medicine: outcomes, challenges and opportunities in the Synergy-COPD project

    Get PDF
    BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is a major challenge for healthcare. Heterogeneities in clinical manifestations and in disease progression are relevant traits in COPD with impact on patient management and prognosis. It is hypothesized that COPD heterogeneity results from the interplay of mechanisms governing three conceptually different phenomena: 1) pulmonary disease, 2) systemic effects of COPD and 3) co-morbidity clustering. OBJECTIVES: To assess the potential of systems medicine to better understand non-pulmonary determinants of COPD heterogeneity. To transfer acquired knowledge to healthcare enhancing subject-specific health risk assessment and stratification to improve management of chronic patients. METHOD: Underlying mechanisms of skeletal muscle dysfunction and of co-morbidity clustering in COPD patients were explored with strategies combining deterministic modelling and network medicine analyses using the Biobridge dataset. An independent data driven analysis of co-morbidity clustering examining associated genes and pathways was done (ICD9-CM data from Medicare, 13 million people). A targeted network analysis using the two studies: skeletal muscle dysfunction and co-morbidity clustering explored shared pathways between them. RESULTS: (1) Evidence of abnormal regulation of pivotal skeletal muscle biological pathways and increased risk for co-morbidity clustering was observed in COPD; (2) shared abnormal pathway regulation between skeletal muscle dysfunction and co-morbidity clustering; and, (3) technological achievements of the projects were: (i) COPD Knowledge Base; (ii) novel modelling approaches; (iii) Simulation Environment; and, (iv) three layers of Clinical Decision Support Systems. CONCLUSIONS: The project demonstrated the high potential of a systems medicine approach to address COPD heterogeneity. Limiting factors for the project development were identified. They were relevant to shape strategies fostering 4P Medicine for chronic patients. The concept of Digital Health Framework and the proposed roadmap for its deployment constituted relevant project outcomes

    Oxygen pathway modeling estimates high Reactive oxygen species production above the highest permanent human habitation.

    Get PDF
    The production of reactive oxygen species (ROS) from the inner mitochondrial membrane is one of many fundamental processes governing the balance between health and disease. It is well known that ROS are necessary signaling molecules in gene expression, yet when expressed at high levels, ROS may cause oxidative stress and cell damage. Both hypoxia and hyperoxia may alter ROS production by changing mitochondrial Po2 (). Because depends on the balance between O2 transport and utilization, we formulated an integrative mathematical model of O2 transport and utilization in skeletal muscle to predict conditions to cause abnormally high ROS generation. Simulations using data from healthy subjects during maximal exercise at sea level reveal little mitochondrial ROS production. However, altitude triggers high mitochondrial ROS production in muscle regions with high metabolic capacity but limited O2 delivery. This altitude roughly coincides with the highest location of permanent human habitation. Above 25,000 ft., more than 90% of exercising muscle is predicted to produce abnormally high levels of ROS, corresponding to the "death zone" in mountaineering

    ChainRank, a chain prioritisation method for contextualisation of biological networks

    Get PDF
    Advances in high throughput technologies and growth of biomedical knowledge have contributed to an exponential increase in associative data. These data can be represented in the form of complex networks of biological associations, which are suitable for systems analyses. However, these networks usually lack both, context specificity in time and space as well as the distinctive borders, which are usually assigned in the classical pathway view of molecular events (e.g. signal transduction). This complexity and high interconnectedness call for automated techniques that can identify smaller targeted subnetworks specific to a given research context (e.g. a disease scenario)

    Data integration in the era of omics: current and future challenges

    Get PDF
    To integrate heterogeneous and large omics data constitutes not only a conceptual challenge but a practical hurdle in the daily analysis of omics data. With the rise of novel omics technologies and through large-scale consortia projects, biological systems are being further investigated at an unprecedented scale generating heterogeneous and often large data sets. These data-sets encourage researchers to develop novel data integration methodologies. In this introduction we review the definition and characterize current efforts on data integration in the life sciences. We have used a web-survey to assess current research projects on data-integration to tap into the views, needs and challenges as currently perceived by parts of the research community

    IHCV: Discovery of Hidden Time-Dependent Control Variables in Non-Linear Dynamical Systems

    Full text link
    Discovering non-linear dynamical models from data is at the core of science. Recent progress hinges upon sparse regression of observables using extensive libraries of candidate functions. However, it remains challenging to model hidden non-observable control variables governing switching between different dynamical regimes. Here we develop a data-efficient derivative-free method, IHCV, for the Identification of Hidden Control Variables. First, the performance and robustness of IHCV against noise are evaluated by benchmarking the IHCV method using well-known bifurcation models (saddle-node, transcritical, pitchfork, Hopf). Next, we demonstrate that IHCV discovers hidden driver variables in the Lorenz, van der Pol, Hodgkin-Huxley, and Fitzhugh-Nagumo models. Finally, IHCV generalizes to the case when only partial observational is given, as demonstrated using the toggle switch model, the genetic repressilator oscillator, and a Waddington landscape model. Our proof-of-principle illustrates that utilizing normal forms could facilitate the data-efficient and scalable discovery of hidden variables controlling transitions between different dynamical regimes and non-linear models.Comment: 12 pages, 2 figure
    • 

    corecore